Integral Calculus Question 444

Question: If $ I=\int_{{}}^{{}}{e^{x}\sin 2x\ dx} $ , then for what value of K, $ KI=e^{x}(\sin 2x-2\cos 2x)+ $ constant

[MP PET 1992]

Options:

A) 1

B) 3

C) 5

D) 7

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_{{}}^{{}}{e^{x}\sin 2x,dx}=\sin 2x,.,e^{x}-2\int_{{}}^{{}}{\cos 2x,.,e^{x}dx} $
$ =\sin 2x,.,e^{x}-2\cos 2x,.,e^{x}-4\int_{{}}^{{}}{e^{x}\sin 2x,dx} $

$ \Rightarrow 5I=e^{x}(\sin 2x-2\cos 2x)+ $ Constant
Equating the given value, we get $ K=5. $