Integral Calculus Question 444

Question: If $ I=\int_{{}}^{{}}{e^{x}\sin 2x\ dx} $ , then for what value of K, $ KI=e^{x}(\sin 2x-2\cos 2x)+ $ constant

[MP PET 1992]

Options:

A) 1

B) 3

C) 5

D) 7

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_{{}}^{{}}{e^{x}\sin 2x,dx}=\sin 2x,.,e^{x}-2\int_{{}}^{{}}{\cos 2x,.,e^{x}dx} $
$ =\sin 2x,.,e^{x}-2\cos 2x,.,e^{x}-4\int_{{}}^{{}}{e^{x}\sin 2x,dx} $

$ \Rightarrow 5I=e^{x}(\sin 2x-2\cos 2x)+ $ Constant
Equating the given value, we get $ K=5. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें