Integral Calculus Question 451

Question: $ \int_{{}}^{{}}{\frac{e^{2x}+1}{e^{2x}-1}\ dx} $ equals

[RPET 1996]

Options:

A) $ \log (e^{x}-{e^{-x}})+c $

B) $ \log (e^{x}+{e^{-x}})+c $

C) $ \log ({e^{-x}}-e^{x})+c $

D) $ \log (1-{e^{-x}})+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_{{}}^{{}}{\frac{e^{2x}+1}{e^{2x}-1}}=\int_{{}}^{{}}{\frac{e^{x}+{e^{-x}}}{e^{x}-{e^{-x}}}},dx $ Put $ e^{x}-{e^{-x}}=t\Rightarrow (e^{x}+{e^{-x}}),dx=dt $
$ \therefore ,I=\int_{{}}^{{}}{\frac{dt}{t},dt}=\log t+c=\log (e^{x}-{e^{-x}})+c $ .