Integral Calculus Question 457

Question: $ \int_{{}}^{{}}{(x+3){{(x^{2}+6x+10)}^{9}}\ dx} $ equals

[SCRA 1996]

Options:

A) $ \frac{1}{20}{{(x^{2}+6x+10)}^{10}}+c $

B) $ \frac{1}{20}{{(x+3)}^{2}}{{(x^{2}+6x+10)}^{10}}+c $

C) $ \frac{1}{16}{{(x^{2}+6x+10)}^{8}}+c $

D) $ \frac{1}{38}{{(x+3)}^{19}}+\frac{1}{2}(x+3)+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{(x+3){{(x^{2}+6x+10)}^{9}}dx} $ $ =\frac{1}{2}\int_{{}}^{{}}{(2x+6){{(x^{2}+6x+10)}^{2}}dx} $ $ =\frac{1}{2}\frac{{{(x^{2}+6x+10)}^{10}}}{10}+c $ $ =\frac{1}{20}{{(x^{2}+6x+10)}^{10}}+c $ .