Integral Calculus Question 458

Question: A primitive of $ \frac{x}{x^{2}+1} $ is

[SCRA 1996]

Options:

A) $ {\log_{e}}(x^{2}+1) $

B) $ x{{\tan }^{-1}}x $

C) $ \frac{{\log_{e}}(x^{2}+1)}{2} $

D) $ \frac{1}{2}x{{\tan }^{-1}}x $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=\frac{x}{1+x^{2}} $ ,
$ \therefore ,I=\int_{{}}^{{}}{f(x)}=\int_{{}}^{{}}{\frac{x}{1+x^{2}},dx} $ Put $ 1+x^{2}=t\Rightarrow 2x,dx=dt\Rightarrow x,dx=dt/2 $
$ \therefore ,I=\frac{1}{2}\int_{{}}^{{}}{\frac{dt}{t}=\frac{1}{2}\log t+c} $ ; $ I=\frac{1}{2}\log (1+x^{2})+c $ .