Integral Calculus Question 461

Question: $ \int_{{}}^{{}}{\sin \sqrt{x}}\ dx= $

[Roorkee 1977]

Options:

A) $ 2[\sin \sqrt{x}-\cos \sqrt{x}]+c $

B) $ 2[\sin \sqrt{x}-\sqrt{x}\cos \sqrt{x}]+c $

C) $ 2[\sin \sqrt{x}+\cos \sqrt{x}]+c $

D) $ 2[\sin \sqrt{x}+\sqrt{x}\cos \sqrt{x}]+c $

Show Answer

Answer:

Correct Answer: B

Solution:

Put $ \sqrt{x}=t\Rightarrow \frac{1}{2\sqrt{x}},dx=dt\Rightarrow dx=2t,dt, $ then
$ \int_{{}}^{{}}{\sin \sqrt{x},dx}=2\int_{{}}^{{}}{t\sin t,dt}=2(-t\cos t+\sin t)+c $
$ =2(\sin \sqrt{x}-\sqrt{x}\cos \sqrt{x})+c. $