Integral Calculus Question 464

Question: $ \int_{{}}^{{}}{\frac{dx}{\sqrt{x+a}+\sqrt{x+b}}}= $

[AISSE 1989]

Options:

A) $ \frac{2}{3(b-a)}[{{(x+a)}^{3/2}}-{{(x+b)}^{3/2}}]+c $

B) $ \frac{2}{3(a-b)}[{{(x+a)}^{3/2}}-{{(x+b)}^{3/2}}]+c $

C) $ \frac{2}{3(a-b)}[{{(x+a)}^{3/2}}+{{(x+b)}^{3/2}}]+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\frac{dx}{\sqrt{x+a}+\sqrt{x+b}}=\int_{{}}^{{}}{\frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)},dx}} $
$ =\frac{1}{(a-b)}\int_{{}}^{{}}{{{(x+a)}^{1/2}}dx}-\frac{1}{(a-b)}\int_{{}}^{{}}{{{(x+b)}^{1/2}}dx} $
$ =\frac{2}{3(a-b)}[{{(x+a)}^{3/2}}-{{(x+b)}^{3/2}}]+c. $