Integral Calculus Question 465

Question: The value of $ \int_{{}}^{{}}{\frac{x^{3}}{\sqrt{1+x^{4}}}\ dx} $ is

[SCRA 1996]

Options:

A) $ {{(1+x^{4})}^{\frac{1}{2}}}+c $

B) $ -{{(1+x^{4})}^{\frac{1}{2}}}+c $

C) $ \frac{1}{2}{{(1+x^{4})}^{\frac{1}{2}}}+c $

D) $ -\frac{1}{2}{{(1+x^{4})}^{\frac{1}{2}}}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{\frac{x^{3}}{\sqrt{1+x^{4}}},dx}=\frac{1}{4}\int_{{}}^{{}}{\frac{4x^{3}}{\sqrt{1+x^{4}}},dx} $ $ (Put,1+x^{4}=t) $ $ =\frac{1}{4}\int_{{}}^{{}}{\frac{dt}{{t^{1/2}}}}=\frac{1}{4}\frac{{t^{-\frac{1}{2}+1}}}{-\frac{1}{2}+1}=\frac{1}{2}\sqrt{t}=\frac{1}{2}\sqrt{1+x^{4}}+c. $