Integral Calculus Question 471

Question: $ \int{x^{x}(1+\log x)dx} $ is equal to

[RPET 2000]

Options:

A) $ x^{x} $

B) $ x^{2x} $

C) $ x^{x}\log x $

D) $ \frac{1}{2}{{(1+\log x)}^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int{x^{x}(1+\log x),dx} $ . Put $ x^{x}=t $ , then $ x^{x}(1+\log x)dx=dt $
$ \therefore I=\int{dt} $
$ \Rightarrow I=t+C $
$ \Rightarrow I=x^{x}+C $ .