Integral Calculus Question 474

Question: $ \int_{{}}^{{}}{\frac{dx}{1-x^{2}}=} $

[MP PET 1987, 92, 2000]

Options:

A) $ {{\tan }^{-1}}x+c $

B) $ {{\sin }^{-1}}x+c $

C) $ \frac{1}{2}\ln | \frac{1+x}{1-x} |+c $

D) $ \frac{1}{2}\ln | \frac{1-x}{1+x} |+c $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{\frac{dx}{1-x^{2}}}=\frac{1}{2}\log ( \frac{1+x}{1-x} )+c=\frac{1}{2}In| \frac{1+x}{1-x} |+c. $