Integral Calculus Question 476

Question: $ \int_{{}}^{{}}{{{\tan }^{3}}}2x\sec 2x\ dx= $

[IIT 1977]

Options:

A) $ \frac{1}{6}{{\sec }^{3}}2x-\frac{1}{2}\sec 2x+c $

B) $ \frac{1}{6}{{\sec }^{3}}2x+\frac{1}{2}\sec 2x+c $

C) $ \frac{1}{9}{{\sec }^{2}}2x-\frac{1}{3}\sec 2x+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{{{\tan }^{3}}2x\sec 2x,dx}=\int_{{}}^{{}}{({{\sec }^{2}}2x-1)\sec 2x\tan 2x,dx} $
$ \int_{{}}^{{}}{({{\sec }^{3}}2x\tan 2x-\sec 2x\tan 2x)dx} $
$ =\int_{{}}^{{}}{{{\sec }^{3}}2x\tan 2x,dx}-\int_{{}}^{{}}{\sec 2x\tan 2x,dx} $ ..?(i)
Now, we take $ \int_{{}}^{{}}{{{\sec }^{3}}2x\tan 2x,dx} $
Put $ \sec 2x=t\Rightarrow \sec 2x\tan 2x=\frac{dt}{2}, $ then it reduces to
$ \frac{1}{2}\int_{{}}^{{}}{t^{2}dt}=\frac{t^{3}}{6}=\frac{{{\sec }^{3}}2x}{6} $
From (i), $ \int_{{}}^{{}}{{{\sec }^{3}}2x\tan 2x,dx}-\int_{{}}^{{}}{\sec 2x\tan 2x,dx} $
$ =\frac{{{\sec }^{3}}2x}{6}-\frac{\sec 2x}{2}+c. $
Trick : Let $ \sec 2x=t, $ then $ \sec 2x\tan 2x,dx=\frac{1}{2}dt $
\ $ \frac{1}{2}\int_{{}}^{{}}{(t^{2}-1),dt}=\frac{1}{6}t^{3}-\frac{1}{2}t+c=\frac{1}{6}{{\sec }^{3}}2x-\frac{1}{2}\sec 2x+c $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें