Integral Calculus Question 478

Question: The value of $ \int{\frac{2dx}{\sqrt{1-4x^{2}}}} $ is

[Karnataka CET 2001; Pb. CET 2001]

Options:

A) $ {{\tan }^{-1}}(2x)+c $

B) $ {{\cot }^{-1}}(2x)+c $

C) $ {{\cos }^{-1}}(2x)+c $

D) $ {{\sin }^{-1}}(2x)+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int{\frac{2dx}{\sqrt{1-4x^{2}}}} $ . Put $ 2x=\sin \theta $
Þ $ 2dx=\cos \theta d\theta $
$ \Rightarrow I=\int{\frac{\cos \theta d\theta }{\sqrt{1-{{\sin }^{2}}\theta }}=\int{\frac{\cos \theta }{\cos \theta }d\theta =\int{d\theta +c=\theta +c}}} $ . Therefore, $ I={{\sin }^{-1}}(2x)+c. $