Integral Calculus Question 479

Question: $ \int{{e^{3\log x}}{{(x^{4}+1)}^{-1}}dx} $ =

[MP PET 2001]

Options:

A) $ \log (x^{4}+1)+c $

B) $ \frac{1}{4}\log (x^{4}+1)+c $

C) $ -\log (x^{4}+1)+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int{{e^{3\log x}}{{(x^{4}+1)}^{-1}}dx} $ $ =\int{{e^{\log x^{3}}}{{(x^{4}+1)}^{-1}}dx} $ $ =\frac{1}{4}\int{\frac{4x^{3}}{(x^{4}+1)}dx}=\frac{1}{4}\log (x^{4}+1)+c $ .