Integral Calculus Question 484

Question: If $ I_{n}=\int{{{(\log x)}^{n}}dx}, $ then $ I_{n}+n{I_{n-1}}= $

[Karnataka CET 2003]

Options:

A) $ x{{(\log x)}^{n}} $

B) $ {{(x\log x)}^{n}} $

C) $ {{(\log x)}^{n-1}} $

D) $ n{{(\log x)}^{n}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I_{n}=\int{{{(\log x)}^{n}}dx} $ …..(i)

$ \therefore {I_{n-1}}=\int{{{(\log x)}^{n-1}}dx} $ …..(ii)
Now, $ I_{n}=\int{{{(\log x)}^{n}}.,dx}={{(\log x)}^{n}}x-n\int{{{(\log x)}^{n-1}}\frac{1}{x}x,dx} $
$ =x{{(\log x)}^{n}}-n\int{{{(\log x)}^{n-1}}dx} $
$ I_{n}=x{{(\log x)}^{n}}-n{I_{n-1}} $ ;
$ \therefore I_{n}+n,{I_{n-1}}=x{{(\log x)}^{n}} $ .