Integral Calculus Question 486

Question: The value of $ \int_{{}}^{{}}{\frac{\sin x-\cos x}{\sin x+\cos x},dx} $ is

[Pb. CET 2000]

Options:

A) $ \frac{1}{\sin x+\cos x}+c $

B) $ \frac{1}{\sin x-\cos x}+c $

C) $ \log (\sin x+\cos x)+c $

D) $ \log ( \frac{1}{\sin x+\cos x} )+c $

Show Answer

Answer:

Correct Answer: D

Solution:

Put $ \sin x+\cos x=t\Rightarrow (\cos x-\sin x)dx=dt $
$ \Rightarrow $ $ -(\sin x-\cos x)dx=dt $
$ \therefore $ $ \int_{{}}^{{}}{\frac{\sin x-\cos x}{\sin x+\cos x}},dx=-\int_{{}}^{{}}{\frac{dt}{t}=-\log t+c=\log ( \frac{1}{t} )+c} $ Hence, $ \int_{{}}^{{}}{\frac{\sin x-\cos x}{\sin x+\cos x}dx=\log ( \frac{1}{\sin x+\cos x} )+c} $ .