Integral Calculus Question 488
Question: $ \int_{{}}^{{}}{\frac{dx}{x\log x\log (\log x)}=} $
Options:
A) $ 2\log (\log x)+c $
B) $ \log [\log (\log x)]+c $
C) $ \log (x\log x)+c $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \int_{{}}^{{}}{\frac{dx}{x\log x,.,\log (\log x)}} $ Put $ \log x=t, $ then it reduces to $ \int_{{}}^{{}}{\frac{dt}{t,.,\log (t)}} $ Again put $ \log t=z, $ then reduces form is $ \int_{{}}^{{}}{\frac{dz}{z}}=\log z=\log [\log (\log x)]+c $ .