Integral Calculus Question 488

Question: $ \int_{{}}^{{}}{\frac{dx}{x\log x\log (\log x)}=} $

Options:

A) $ 2\log (\log x)+c $

B) $ \log [\log (\log x)]+c $

C) $ \log (x\log x)+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\frac{dx}{x\log x,.,\log (\log x)}} $ Put $ \log x=t, $ then it reduces to $ \int_{{}}^{{}}{\frac{dt}{t,.,\log (t)}} $ Again put $ \log t=z, $ then reduces form is $ \int_{{}}^{{}}{\frac{dz}{z}}=\log z=\log [\log (\log x)]+c $ .