Integral Calculus Question 497

Question: The value of $ \int_{{}}^{{}}{\frac{dx}{\sqrt{x},(x+9)}dx} $ is equal to

[Pb. CET 2002]

Options:

A) $ {{\tan }^{-1}}\sqrt{x} $

B) $ {{\tan }^{-1}}( \frac{\sqrt{x}}{3} ) $

C) $ \frac{2}{3}{{\tan }^{-1}}\sqrt{x} $

D) $ \frac{2}{3}{{\tan }^{-1}}( \frac{\sqrt{x}}{3} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

We have, $ I=\int_{{}}^{{}}{\frac{dx}{\sqrt{x}(x+9)}} $ Put $ \sqrt{x}=t $ , squaring both sides, we get $ x=t^{2} $ and $ dx=2tdt $
$ \therefore $ $ I=2\int_{{}}^{{}}{\frac{dt}{t^{2}+3^{2}}}=\frac{2}{3}{{\tan }^{-1}}( \frac{t}{3} ) $
Þ $ I=\frac{2}{3}{{\tan }^{-1}}( \frac{\sqrt{x}}{3} ) $ .