Integral-Calculus Question 499

Question: If m is an integer, then $ \int_0^{\pi }{\frac{\sin (2mx)}{\sin x}dx} $ is equal to:

Options:

A) 1

B) 2

C) 0

D) $ \pi $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Use $ \int_0^{a}{f(x)dx=\int_0^{a}{f(a-x)dx}} $ $ \int_0^{\pi }{\frac{\sin 2mx}{\sin x}dx=\int_0^{\pi }{\frac{\sin (2m\pi -2mx)}{\sin (\pi -x)}}dx} $ $ =\int_0^{\pi }{\frac{-\sin 2mx}{\sin x}dx=-I\Rightarrow 2I=0\Rightarrow I=0} $