Integral Calculus Question 5

Question: $ \int_{{}}^{{}}{\sqrt{1+x^{2}}\ dx=} $

[MP PET 1987, 89]

Options:

A) $\frac{x}{2} \sqrt{1+x^2}+\frac{1}{2} \log |x+\sqrt{1+x^2}|+c$

B) $ \frac{2}{3}{{(1+x^{2})}^{3/2}}+c $

C) $ \frac{2}{3}x{{(1+x^{2})}^{3/2}}+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{\sqrt{1+x^{2}}}dx=\frac{x}{2} \sqrt{1+x^2}+\frac{1}{2} \log |x+\sqrt{1+x^2}|+c$ .