Integral Calculus Question 5
Question: $ \int_{{}}^{{}}{\sqrt{1+x^{2}}\ dx=} $
[MP PET 1987, 89]
Options:
A) $\frac{x}{2} \sqrt{1+x^2}+\frac{1}{2} \log |x+\sqrt{1+x^2}|+c$
B) $ \frac{2}{3}{{(1+x^{2})}^{3/2}}+c $
C) $ \frac{2}{3}x{{(1+x^{2})}^{3/2}}+c $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ \int_{{}}^{{}}{\sqrt{1+x^{2}}}dx=\frac{x}{2} \sqrt{1+x^2}+\frac{1}{2} \log |x+\sqrt{1+x^2}|+c$ .