Integral-Calculus Question 517

Question: If $ f(x) $ is an even function, then what is $ \int\limits_0^{\pi }{f(\cos x)dx} $ equal to?

Options:

A) 0

B) $ \int\limits_0^{\frac{\pi }{2}}{f(\cos x)dx} $

C) $ 2\int\limits_0^{\frac{\pi }{2}}{f(\cos x)dx} $

D) 1

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Since $ f(x) $ is an even function therefore $ \int\limits_0^{\pi }{f(x)dx=2\int\limits_0^{\pi /2}{f(x)dx}} $ Hence, $ \int\limits_0^{\pi }{f(\cos x)dx=2\int\limits_0^{\pi /2}{f(\cos x)dx}} $