Integral-Calculus Question 519
Question: If $ I_{n}=\int\limits_0^{\frac{\pi }{4}}{{{\tan }^{n}}x,dx} $ then what is $ I_{n}+{I_{n-2}} $ equal to?
Options:
A) $ \frac{1}{n} $
B) $ \frac{1}{(n-1)} $
C) $ \frac{n}{(n-1)} $
D) $ \frac{1}{(n-2)} $
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Let  $ I_{n}=\int\limits_0^{\pi /4}{{{\tan }^{n}}xdx} $  Consider,  $ I_{n}+{I_{n-2}}=\int\limits_0^{\pi /4}{{{\tan }^{n}}xdx+\int\limits_0^{\pi /4}{{{\tan }^{n-2}}xdx}} $   $ =\int\limits_0^{\pi /4}{{{\tan }^{n-2}}x({{\tan }^{2}}x+1)dx} $   $ =\int\limits_0^{\pi /4}{{{\sec }^{2}}x{{\tan }^{n-2}}xdx} $  Put  $ \tan x=t $   $ {{\sec }^{2}}xdx=dt $  when  $ x=0 $  then  $ t=0 $  and when  $ x=\frac{\pi }{4},t=1 $
$ \therefore I_{n}+{I_{n-2}}=\int\limits_0^{1}{{t^{n-2}}dt} $   $ =. \frac{{t^{n-2+1}}}{n-2+1} |_0^{1}. =\frac{{t^{n-1}}}{n-1} |_0^{1}=\frac{1}{n-1}[1-0]=\frac{1}{n-1} $
 BETA
  BETA 
             
             
           
           
           
          