Integral Calculus Question 56

Question: $ \int_{{}}^{{}}{\frac{dx}{2x^{2}+x+1}}\ $ equals

[RPET 1997]

Options:

A) $ \frac{1}{\sqrt{7}}{{\tan }^{-1}}( \frac{4x+1}{\sqrt{7}} )+c $

B) $ \frac{1}{2\sqrt{7}}{{\tan }^{-1}}( \frac{4x+1}{\sqrt{7}} )+c $

C) $ \frac{1}{2}{{\tan }^{-1}}( \frac{4x+1}{\sqrt{7}} )+c $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_{{}}^{{}}{\frac{dx}{2x^{2}+x+1}}=\int_{{}}^{{}}{\frac{dx}{2( x^{2}+\frac{x}{2}+\frac{1}{2} )}} $ $ =\frac{1}{2}\int_{{}}^{{}}{\frac{dx}{x^{2}+\frac{x}{2}+\frac{1}{16}-\frac{1}{16}+\frac{1}{2}}}=\frac{1}{2}\int_{{}}^{{}}{\frac{dx}{{{( x+\frac{1}{4} )}^{2}}+{{( \frac{\sqrt{7}}{4} )}^{2}}}} $ $ =\frac{1}{2}\frac{1}{\frac{\sqrt{7}}{4}}{{\tan }^{-1}}\frac{[x+(1/4)]}{\sqrt{7}/4} $ $ =\frac{2}{\sqrt{7}}{{\tan }^{-1}}\frac{(4x+1)}{\sqrt{7}}+C $ .