Integral Calculus Question 57

Question: $ \int_{{}}^{{}}{2x{{\cos }^{3}}x^{2}\sin x^{2}dx=} $

Options:

A) $ -\frac{1}{4}{{\cos }^{4}}x^{2}+c $

B) $ \frac{1}{4}{{\cos }^{4}}x^{2}+c $

C) $ {{\cos }^{4}}x^{2}+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ t=\cos x^{2}\Rightarrow dt=-2x\sin x^{2}dx, $ then $ \int_{{}}^{{}}{2x{{\cos }^{3}}x^{2}\sin x^{2}dx}=-\int_{{}}^{{}}{t^{3}dt}=-\frac{t^{4}}{4}+c $ $ =-\frac{1}{4}{{\cos }^{4}}x^{2}+c. $