Integral Calculus Question 63

Question: $ \int_{{}}^{{}}{\frac{dx}{(\sin x+\sin 2x)}=} $

[IIT 1984]

Options:

A) $ \frac{1}{6}\log (1-\cos x)+\frac{1}{2}\log (1+\cos x)-\frac{2}{3}\log (1+2\cos x) $

B) $ 6\log (1-\cos x)+2\log (1+\cos x)-\frac{2}{3}\log (1+2\cos x) $

C) $ 6\log (1-\cos x)+\frac{1}{2}\log (1+\cos x)+\frac{2}{3}\log (1+2\cos x) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_{{}}^{{}}{\frac{dx}{\sin x(1+2\cos x)}}=\int_{{}}^{{}}{\frac{\sin x,dx}{{{\sin }^{2}}x(1+2\cos x)}} $
$ =\int_{{}}^{{}}{\frac{\sin x,dx}{(1-\cos x)(1+\cos x)(1+2\cos x)}} $
Now differential coefficient of $ \cos x $ is $ -\sin x $ which is given in numerator and hence we make the substitution $ \cos x=t\Rightarrow -\sin x,dx=dt $

$ \therefore ,I=-\int_{{}}^{{}}{\frac{dt}{(1-t)(1+t)(1+2t)}} $
We split the integrand into partial fractions
\ $ I=-\int{[ \frac{1}{6(1-t)}-\frac{1}{2(1+t)}+\frac{4}{3(1+2t)} ]},dt $ etc.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें