Integral Calculus Question 67

Question: $ \int_{{}}^{{}}{\frac{dx}{x(x^{n}+1)}=} $

[Roorkee 1979]

Options:

A) $ n\log \frac{x^{n}}{x^{n}+1}+c $

B) $ n\log \frac{x^{n}+1}{x^{n}}+c $

C) $ \frac{1}{n}\log \frac{x^{n}}{x^{n}+1}+c $

D) $ \frac{1}{n}\log \frac{x^{n}+1}{x^{n}}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

Put $ x^{n}=t\Rightarrow n{x^{n-1}}dx=dt $
$ \Rightarrow \frac{nx^{n}}{x},dx=dt\Rightarrow \frac{1}{x},dx=\frac{dt}{nt}, $ then it reduces to $ \int_{{}}^{{}}{\frac{dt}{nt(t+1)}}=\frac{1}{n}[ \int_{{}}^{{}}{\frac{dt}{t(t+1)}} ] $ $ =\frac{1}{n}[ \int_{{}}^{{}}{\frac{1}{t},dt-\int_{{}}^{{}}{\frac{1}{t+1}\ dt}} ]=\frac{1}{n}\log \frac{x^{n}}{x^{n}+1}+c $ .