Integral Calculus Question 69

Question: $ \int_{{}}^{{}}{\frac{dx}{x(x^{7}+1)}}= $

[Karnataka CET 2004]

Options:

A) $ \log ( \frac{x^{7}}{x^{7}+1} )+c $

B) $ \frac{1}{7}\log ( \frac{x^{7}}{x^{7}+1} )+c $

C) $ \log ( \frac{x^{7}+1}{x^{7}} )+c $

D) $ \frac{1}{7}\log ( \frac{x^{7}+1}{x^{7}} )+c $

Show Answer

Answer:

Correct Answer: B

Solution:

Given, $ \int_{{}}^{{}}{\frac{dx}{x,(x^{7}+1)}}=\int_{{}}^{{}}{\frac{dx}{x^{8}( 1+\frac{1}{x^{7}} )}} $ Put $ 1+\frac{1}{x^{7}}=t $
Þ $ \frac{-7}{x^{8}}dx=dt $ \ $ I=\frac{-1}{7}\int{\frac{dt}{t}=}\frac{-1}{7}\log t+c $
Þ $ I=-\frac{1}{7}\log ( \frac{x^{7}+1}{x^{7}} )+c $
Þ $ I=\frac{1}{7}\log ( \frac{x^{7}}{x^{7}+1} )+c $ .