Integral Calculus Question 7

Question: If $ \int{\frac{\cos 4x+1}{\cos x-\tan x}}dx=k\cos 4x+c $ then

[DCE 2005]

Options:

A) $ k=-1/2 $

B) $ k=-1/8 $

C) $ k=-1/4 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int{\frac{1+\cos 4x}{\cot x-\tan x}}dx=\int{\frac{2{{\cos }^{2}}2x}{{{\cos }^{2}}x-{{\sin }^{2}}x}}.\sin x\cos xdx $ $ =\int{\cos 2x\sin 2xdx=-\frac{1}{8}\cos 4x+c} $ ,
$ \therefore $ $ k=-1/8 $ .