Integral Calculus Question 70

Question: $ \int_{{}}^{{}}{\frac{dx}{x(x^{5}+1)}}= $

[UPSEAT 2004]

Options:

A) $ \frac{1}{5}\log x^{5}(x^{5}+1)+c $

B) $ \frac{1}{5}\log x^{5}( \frac{1+x^{5}}{x^{5}} )+c $

C) $ \frac{1}{5}\log x^{5}( \frac{x^{5}}{x^{5}+1} )+c $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

We have $ I=\int{\frac{dx}{x(x^{5}+1)}}=\int{\frac{dx}{x^{6}( 1+\frac{1}{x^{5}} )}} $ Put $ 1+\frac{1}{x^{5}}=t $
Þ $ \frac{-5}{x^{6}}dx=dt $
Þ $ I=-\frac{1}{5}\int{\frac{dt}{t}=-\frac{1}{5}}\log t+c $ $ I=-\frac{1}{5}\log ( 1+\frac{1}{x^{5}} )+c=-\frac{1}{5}\log ( \frac{x^{5}+1}{x^{5}} )+c $ \ $ I=\frac{1}{5}\log ( \frac{x^{5}}{x^{5}+1} )+c $ .