Integral Calculus Question 74

Question: $ \int{\frac{xdx}{x^{2}+4x+5}=} $

[RPET 2002]

Options:

A) $ \frac{1}{2}\log (x^{2}+4x+5)+2{{\tan }^{-1}}(x)+c $

B) $ \frac{1}{2}\log (x^{2}+4x+5)-{{\tan }^{-1}}(x+2)+c $

C) $ \frac{1}{2}\log (x^{2}+4x+5)+{{\tan }^{-1}}(x+2)+c $

D) $ \frac{1}{2}\log (x^{2}+4x+5)-2{{\tan }^{-1}}(x+2)+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int{\frac{xdx}{x^{2}+4x+5}} $ $ =\int{\frac{x+2-2}{{{(x+2)}^{2}}+1}dx} $ $ =\frac{1}{2}\int{\frac{2(x+2),dx}{{{(x+2)}^{2}}+1}}-2\int{\frac{dx}{1+{{(x+2)}^{2}}}} $ $ =\frac{1}{2}\int{\frac{dt}{t}-2\int{\frac{dx}{1+{{(x+2)}^{2}}}}} $ [Put $ 1+{{(x+2)}^{2}}=t $ in first expression Þ 2(x +2)dx = dt] $ =\frac{1}{2}\log t-2{{\tan }^{-1}}(x+2)+c $ $ =\frac{1}{2}\log (x^{2}+4x+5)-2{{\tan }^{-1}}(x+2)+c $ .