Integral Calculus Question 8

Question: If $ \int{\frac{1}{x+x^{5}}dx=f(x)+c} $ , then the value of $ \int{\frac{x^{4}}{x+x^{5}}dx} $ is

[DCE 2005]

Options:

A) $ \log x-f(x)+c $

B) $ f(x)+\log x+c $

C) $ f(x)-\log x+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{x^{4}dx}{x+x^{5}}=\int{\frac{(x^{4}+1)dx}{x+x^{5}}} $ $ =\int{\frac{(x^{4}+1)dx}{x+x^{5}}} $ $ -\int{\frac{dx}{x+x^{5}}} $ $ =\int{\frac{(x^{4}+1)dx}{x(1+x^{4})}}-\int{\frac{dx}{x(x^{4}+1)}} $ $ =\int{\frac{dx}{x}}-\int{\frac{dx}{x+x^{5}}} $ $ =\log x-f(x)-c_2+c_1=\log x-f(x)+c $ Where $ c_1-c_2=c= $ a new constant.