Integral Calculus Question 93

Question: If $ \int_{{}}^{{}}{(\sin 2x+\cos 2x)\ dx=\frac{1}{\sqrt{2}}\sin (2x-c)+a} $ , then the value of a and c is

[Roorkee 1978]

Options:

A) $ c=\pi /4 $ and $ a=k $ (an arbitrary constant)

B) $ c=-\pi /4 $ and $ a=\pi /2 $

C) $ c=\pi /2 $ and a is an arbitrary constant

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{(\sin 2x+\cos 2x),dx}=-\frac{\cos 2x}{2}+\frac{\sin 2x}{2}+k $
$ =\frac{1}{\sqrt{2}}( \sin 2x\cos \frac{\pi }{4}-\cos 2x\sin \frac{\pi }{4} )+k $
$ =\frac{1}{\sqrt{2}}\sin ( 2x-\frac{\pi }{4} )+k $

$ \Rightarrow c=\frac{\pi }{4} $ and $ a=k, $ an arbitrary constant.