Inverse Trigonometric Functions Question 1

Question: $ {{\cot }^{-1}}[ \frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}} ]= $

[MNR 1986]

Options:

A) $ \pi -x $

B) $ 2\pi -x $

C) $ \frac{x}{2} $

D) $ \pi -\frac{x}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\cot }^{-1}}[ \frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}} ] $

$ ={{\cot }^{-1}}[ \frac{(\sqrt{1-\sin x}+\sqrt{1+\sin x})}{(\sqrt{1-\sin x}-\sqrt{1+\sin x})}.\frac{(\sqrt{1-\sin x}+\sqrt{1+\sin x})}{(\sqrt{1-\sin x}+\sqrt{1+\sin x})} ] $

= $ {{\cot }^{-1}}[ \frac{(1-\sin x)+(1+\sin x)+2\sqrt{1-{{\sin }^{2}}x}}{(1-\sin x)-(1+\sin x)} ] $

= $ {{\cot }^{-1}}[ \frac{2(1+\cos x)}{-2\sin x} ]={{\cot }^{-1}}[ -\frac{2{{\cos }^{2}}(x/2)}{2\sin (x/2)\cos (x/2)} ] $ = $ {{\cot }^{-1}}( -\cot \frac{x}{2} )={{\cot }^{-1}}[ \cot ( \pi -\frac{x}{2} ) ]=\pi -\frac{x}{2} $ .

Trick: Put $ x=\frac{\pi }{4} $ ,

so that the expression becomes $ {{\cot }^{-1}}[ \frac{\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}} ] $

= $ {{\cot }^{-1}}[ \frac{\sqrt{2}-1+\sqrt{2}+1+2\sqrt{2-1}}{\sqrt{2}-1-\sqrt{2}-1} ] $

= $ {{\cot }^{-1}}[ \frac{2\sqrt{2}+2}{-2} ]={{\cot }^{-1}}(-1-\sqrt{2})=157.5{}^\circ $ .