Inverse Trigonometric Functions Question 103

Question: If $ {{\sin }^{-1}}( x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-… ) $

$ +{{\cos }^{-1}}( x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-… )=\frac{\pi }{2} $ for $ 0<| x |<\sqrt{2}, $ then x equals

Options:

A) ½

B) 1

C) -1/2

D) -1

Show Answer

Answer:

Correct Answer: B

$ {{\sin }^{-1}}( x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-… )+{{\cos }^{-1}}( x^{2}-\frac{x^{2}}{2}+\frac{x^{6}}{4}-… )=\frac{\pi }{2} $ This is true only when $ x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-…=x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}… $

$ \Rightarrow \frac{x}{1+\frac{x}{2}}=\frac{x^{2}}{1+\frac{x^{2}}{2}} $ (Common rations are $ -\frac{x}{2}\And -\frac{x^{2}}{2}\And $ |common ratios|<1, in the given interval) $ \frac{2x}{2+x}=\frac{2x^{2}}{2+x^{2}}\Rightarrow x=0orx=1\Rightarrow x=1, $ {x cannot be zero as $ 0<| x |<\sqrt{2} $ }.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें