Inverse Trigonometric Functions Question 105

Question: The value of $ {{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18 $ is

Options:

A) $ \pi $

B) $ \frac{\pi }{2} $

C) $ {{\cot }^{-1}}5 $

D) $ {{\cot }^{-1}}3 $

Show Answer

Answer:

Correct Answer: D

We have $ {{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18 $

$ {{\tan }^{-1}}\frac{1}{7}+{{\tan }^{-1}}\frac{1}{8}+{{\tan }^{-1}}\frac{1}{18} $

$ ={{\tan }^{-1}}( \frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{7}\times \frac{1}{8}} )+{{\tan }^{-1}}\frac{1}{18} $

$ ={{\tan }^{-1}}\frac{15}{55}{{\tan }^{-1}}\frac{1}{18}( \because \frac{1}{7}.\frac{1}{8}<1 ) $

$ {{\tan }^{-1}}\frac{3}{11}+{{\tan }^{-1}}\frac{1}{18}={{\tan }^{-1}}( \frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{11}\times \frac{1}{18}} ) $

$ ( \because \frac{3}{11}.\frac{1}{18}<1 ) $

$ ={{\tan }^{-1}}\frac{65}{195}={{\tan }^{-1}}\frac{1}{3}={{\cot }^{-1}}3 $