Inverse Trigonometric Functions Question 106

Question: If $ {{\sin }^{-1}}( \frac{2a}{1+a^{2}} )-{{\cos }^{-1}}( \frac{1-b^{2}}{1+b^{2}} )={{\tan }^{-1}}( \frac{2x}{1-x^{2}} ), $ then what is the value of x?

Options:

A) $ a/b $

B) $ ab $

C) $ b/a $

D) $ \frac{a-b}{1+ab} $

Show Answer

Answer:

Correct Answer: D

Given, $ {{\sin }^{-1}}( \frac{2a}{1+a^{2}} )-{{\cos }^{-1}}( \frac{1-b^{2}}{1+b^{2}} )=ta{b^{-1}}( \frac{2x}{1-x^{2}} ) $

$ \therefore 2{{\tan }^{-1}}a-2{{\tan }^{-1}}b=2{{\tan }^{-1}}x $

$ \Rightarrow {{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}x $

$ \Rightarrow {{\tan }^{-1}}( \frac{a-b}{1+ab} )={{\tan }^{-1}}x $

$ \Rightarrow x=\frac{a-b}{1+ab} $