Inverse Trigonometric Functions Question 11

Question: $ 2{{\tan }^{-1}}(\cos x)={{\tan }^{-1}}(cose{c^{2}}x), $ then x =

[UPSEAT 2002]

Options:

A) $ \frac{\pi }{2} $

B) $ \pi $

C) $ \frac{\pi }{6} $

D) $ \frac{\pi }{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ 2{{\tan }^{-1}}(\cos x) $

$ ={{\tan }^{-1}}(\cos e{c^{2}}x) $

Therefore $ {{\tan }^{-1}}( \frac{2\cos x}{1-{{\cos }^{2}}x} )={{\tan }^{-1}}( \frac{1}{{{\sin }^{2}}x} ) $

$ \Rightarrow \frac{2\cos x}{{{\sin }^{2}}x}=\frac{1}{{{\sin }^{2}}x} $

Therefore $ 2\cos x=1 $ $ \Rightarrow x=\frac{\pi }{3} $ .