Inverse Trigonometric Functions Question 111

Question: If $ {{\sin }^{-1}}a+{{\sin }^{-1}}b+{{\sin }^{-1}}c=\pi , $ then find the value of $ a\sqrt{1-a^{2}}+b\sqrt{1-b^{2}}+c\sqrt{1-c^{2}}. $

Options:

A) $ abc $

B) $ a+b+c $

C) $ \frac{1}{a}\times \frac{1}{b}\times \frac{1}{c} $

D) $ 2abc $

Show Answer

Answer:

Correct Answer: D

Let $ {{\sin }^{-1}}a=x $

$ \therefore a=\sin x $

$ {{\sin }^{-1}}b=y $

$ \therefore b=\sin y;{{\sin }^{-1}}c=z $

$ \therefore c=\sin z $

$ \therefore a\sqrt{1-a^{2}}+b\sqrt{1-b^{2}}+c\sqrt{1-c^{2}} $

$ =\sin x\cos x+\sin y\cos y+sinzcosz $

$ =(1/2)(sin2x+sin2y+sin2z)=(1/2)(4sinxsinysinz) $

$ =2\sin x\sin y\sin z=2abc $