Inverse Trigonometric Functions Question 118

Question: The set of values of k for which $ x^{2}-kx+{{\sin }^{-1}}(sin4)>0 $ for all real x is

Options:

A) $ \phi $

B) $ (-2,2) $

C) $ R $

D) $ (-\infty ,-2)\cup (2,\infty ) $

Show Answer

Answer:

Correct Answer: A

$ \because \frac{\pi }{2}<4<\frac{3\pi }{2}, $ so $ {{\sin }^{-1}}\sin 4 $

$ ={{\sin }^{-1}}\sin (\pi -4)=4 $

The inequality becomes $ x^{2}-kx+\pi -4>0 $

The discriminant $ D=k^{2}-4(\pi -4) $ is not greater than 0 for all k. That is, $ x^{2}-kx+(\pi -4) $ cannot hold for all x.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें