Inverse Trigonometric Functions Question 120

Question: In a triangle ABC. If $ A={{\tan }^{-1}}2 $ and $ B={{\tan }^{-1}}3, $ then C is equal to

Options:

A) $ \frac{\pi }{3} $

B) $ \frac{\pi }{4} $

C) $ \frac{\pi }{6} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: B

We have $ A={{\tan }^{-1}}2\Rightarrow \tan A=2 $ and $ B={{\tan }^{-1}}3\Rightarrow \tan B=3. $ Since, A, B, C are angles of a triangle
$ \therefore A+B+C=\pi $

$ \Rightarrow C=\pi -(A+B) $ ? (1) Now, $ A+B={{\tan }^{-1}}2+{{\tan }^{-1}}3 $

$ =\pi +{{\tan }^{-1}}( \frac{2+3}{1-2.3} ) $

$ [ \because {{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\frac{x+y}{1-xy} ] $

$ =\pi +{{\tan }^{-1}}(-1)=\pi -ta{n^{-1}}(-1) $

$ =\pi -\frac{\pi }{4}=\frac{3\pi }{4} $

$ \therefore $ from (1), $ C=\pi -\frac{3\pi }{4}=\frac{\pi }{4}. $