Inverse Trigonometric Functions Question 121

Question: If $ \sin ( {{\sin }^{-1}}\frac{1}{5}+{{\cos }^{-1}}x )=1 $ , then what is x equal to?

Options:

A) 0

B) 1

C) $ \frac{4}{5} $

D) $ \frac{1}{5} $

Show Answer

Answer:

Correct Answer: D

Let $ \sin [ {{\sin }^{-1}}( \frac{1}{5} )+{{\cos }^{-1}}x ]=1 $

$ \Rightarrow {{\sin }^{-1}}( \frac{1}{5} )+{{\cos }^{-1}}x={{\sin }^{-1}}1 $

$ \Rightarrow {{\sin }^{-1}}( \frac{1}{5} )+{{\cos }^{-1}}x=\frac{\pi }{2} $

$ \Rightarrow {{\cos }^{-1}}x=\frac{\pi }{2}-{{\sin }^{-1}}( \frac{1}{5} )={{\cos }^{-1}}( \frac{1}{5} ) $

$ \Rightarrow x=\frac{1}{5} $