Inverse Trigonometric Functions Question 123

Question: The value of $ {{\cos }^{-1}}x+{{\cos }^{-1}}( \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}} );\frac{1}{2}\le x\le 1 $ is

Options:

A) $ -\frac{\pi }{3} $

B) $ \frac{\pi }{3} $

C) $ \frac{3}{\pi } $

D) $ -\frac{3}{\pi } $

Show Answer

Answer:

Correct Answer: B

Let $ {{\cos }^{-1}}x=y $

$ \Rightarrow x=\cos y, $ so that $ \frac{1}{2}\le x\le 1 $ or $ 0\le y\le \frac{\pi }{3} $ and $ \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}}=\frac{1}{2}\cos y+\frac{\sqrt{3}}{2}\sin y $

$ =\cos \frac{\pi }{3}\cos y+\sin \frac{\pi }{3}\sin y=\cos ( \frac{\pi }{3}-y ) $

$ \Rightarrow {{\cos }^{-1}}( \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}} )=\frac{\pi }{3}-y $

$ \therefore $ the given expression is equal to $ y+\frac{\pi }{3}-y,i.e,\frac{\pi }{3} $