Inverse Trigonometric Functions Question 126

Question: If $ {{\tan }^{-1}}(sin^{2}\theta -2sin\theta +3)+co{t^{-1}}({5^{{{\sec }^{2}}y}}+1)=\frac{\pi }{2} $ , then the value of $ {{\cos }^{2}}\theta -\sin \theta $ is equal to

Options:

A) 0

B) -1

C) 1

D) none of these

Show Answer

Answer:

Correct Answer: C

From the given equation $ {{\sin }^{2}}\theta -2\sin \theta +3={5^{{{\sec }^{2}}y}}+1 $ , we get $ {{(sin\theta -1)}^{2}}+2={5^{{{\sec }^{2}}y}}+1 $

$ L\text{.}H.S.\le 6,R.H.S.\ge 6 $

Possible solution is $ \sin \theta =-1 $ when L.H.S. = R.H.S.
$ \Rightarrow {{\cos }^{2}}\theta =0 $

$ \Rightarrow {{\cos }^{2}}\theta -\sin \theta =1 $