Inverse Trigonometric Functions Question 13

Question: If $ {{\sin }^{-1}}x=\theta +\beta $ and $ {{\sin }^{-1}}y=\theta -\beta , $ then $ 1+xy= $

Options:

A) $ {{\sin }^{2}}\theta +{{\sin }^{2}}\beta $

B) $ {{\sin }^{2}}\theta +{{\cos }^{2}}\beta $

C) $ {{\cos }^{2}}\theta +{{\cos }^{2}}\beta $

D) $ {{\cos }^{2}}\theta +{{\sin }^{2}}\beta $

Show Answer

Answer:

Correct Answer: B

Solution:

Obviously $ x=\sin (\theta +\beta ) $ and $ y=\sin (\theta -\beta ) $

$ \therefore 1+xy=1+\sin (\theta +\beta )\sin (\theta -\beta ) $

$ =1+{{\sin }^{2}}\theta -{{\sin }^{2}}\beta ={{\sin }^{2}}\theta +{{\cos }^{2}}\beta $ .