Inverse Trigonometric Functions Question 130

Question: If $ {{\cos }^{-1}}x-{{\cos }^{-1}}\frac{y}{2}=\alpha , $ then $ 4x^{2}-4xy\cos \alpha +y^{2} $ is equal to

Options:

A) 4

B) $ 2{{\sin }^{2}}\alpha $

C) $ -4{{\sin }^{2}}\alpha $

D) $ 4{{\sin }^{2}}\alpha $

Show Answer

Answer:

Correct Answer: D

we have $ {{\cos }^{-1}}x-{{\cos }^{-1}}\frac{y}{2}=\alpha $

Or $ x=\cos ( {{\cos }^{-1}}\frac{y}{2}+\alpha ) $

$ =\cos ( {{\cos }^{-1}}\frac{y}{2} )\cos \alpha -\sin ( {{\cos }^{-1}}\frac{y}{2} )\sin \alpha $

$ =\frac{y}{2}\cos \alpha -\sqrt{1-\frac{y^{2}}{4}}\sin \alpha $

Or $ 2x=y\cos \alpha -\sin \alpha \sqrt{4-y^{2}} $

Or $ 2x-y\cos \alpha =-\sin \alpha \sqrt{4-y^{2}} $ Squaring, we get $ 4x^{2}+y^{2}{{\cos }^{2}}\alpha -4xy\cos \alpha $

$ =4{{\sin }^{2}}\alpha -y^{2}{{\sin }^{2}}\alpha $

Or $ 4x^{2}-4xy\cos \alpha +y^{2}=4{{\sin }^{2}}\alpha $