Inverse Trigonometric Functions Question 132

Question: The value of $ {{\sin }^{-1}}[cos{co{s^{-1}}(cosx)+si{n^{-1}}(sinx)}] $ where $ x\in ( \frac{\pi }{2},\pi ) $ is equal to

Options:

A) $ \frac{\pi }{2} $

B) $ -\pi $

C) $ \pi $

D) $ -\frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: D

$ {{\sin }^{-1}}[\cos {{{\cos }^{-1}}(\cos x)+{{\sin }^{-1}}(\sin x)}] $

$ ={{\sin }^{-1}}[\cos (x+\pi -x)] $ as $ x\in (\pi /2,\pi ) $

$ ={{\sin }^{-1}}(cos\pi )=si{n^{-1}}(-1)=-\frac{\pi }{2} $