Inverse Trigonometric Functions Question 137

Question: The range of $ y=(co{t^{-1}}x)(co{t^{-1}}(-x)) $ is

Options:

A) $ (. 0,\frac{{{\pi }^{2}}}{4} ] $

B) $ (0,\pi ) $

C) $ (0,2\pi ] $

D) $ (0,1] $

Show Answer

Answer:

Correct Answer: B

$ y=(co{t^{-1}}x)(co{t^{-1}}(-x)) $

$ ={{\cot }^{-1}}(x)(\pi -co{t^{-1}}(x)) $

Now $ {{\cot }^{-1}}(x) $ and $ (\pi -co{t^{-1}}(x))>0 $

Using A.M $ \ge G.M. $ we get $ \frac{{{\cot }^{-1}}x+(\pi -co{t^{-1}}x)}{2}\ge \sqrt{(co{t^{-1}}x)(\pi -co{t^{-1}}x)} $

$ \Rightarrow 0<{{\cot }^{-1}}(x)(\pi -co{t^{-1}}(x)) $

$ \le ( \frac{{{\cot }^{-1}}x+(\pi -co{t^{-1}}x)}{2} )=\frac{{{\pi }^{2}}}{4} $

$ \Rightarrow 0<y\le \frac{{{\pi }^{2}}}{4} $