Inverse Trigonometric Functions Question 139

Question: The trigonometric equation $ {{\sin }^{-1}}x=2{{\sin }^{-1}}a $ has a solution for

Options:

A) $ \frac{1}{2}<| a |<\frac{1}{\sqrt{2}} $

B) All real values of a

C) $ | a |<1/2 $

D) $ | a |\ge \frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: C

$ {{\sin }^{-1}}x=2{{\sin }^{-1}}a $

$ \therefore -\frac{\pi }{2}\le {{\sin }^{-1}}x\le \frac{\pi }{2}, $

$ \frac{-\pi }{2}\le 2{{\sin }^{-1}}a\le \frac{\pi }{2} $

$ \Rightarrow \frac{-\pi }{4}\le {{\sin }^{-1}}a\le \frac{\pi }{4} $

$ \therefore \frac{-1}{\sqrt{2}}\le a\le \frac{1}{\sqrt{2}} $

$ \therefore | a |\le \frac{1}{\sqrt{2}}(as\frac{1}{\sqrt{2}}>\frac{1}{2}) $

Out of the given four options no one is absolutely correct, but option (3) could be take into consideration.

If $ | a |<1/2 $ is taken as correct, then its domain is not satisfied for $ a=1/\sqrt{3} $ , but the equation is satisfied.