Inverse Trigonometric Functions Question 14

Question: If $ \cos (2{{\sin }^{-1}}x)=\frac{1}{9}, $ then $ x= $

[Roorkee 1975]

Options:

A) Only 2/3

B) Only -2/3

C) 2/3, -2/3

D) Neither 2/3 nor ­-2/3

Show Answer

Answer:

Correct Answer: C

Solution:

$ \cos (2{{\sin }^{-1}}x)=\frac{1}{9} $

$ \Rightarrow \cos ({{\sin }^{-1}}2x\sqrt{1-x^{2}})=\frac{1}{9} $

Therefore $ \cos ({{\cos }^{-1}}\sqrt{1-4x^{2}+4x^{4}})=\frac{1}{9} $

Therefore $ 1-2x^{2}=\frac{1}{9}\Rightarrow 2x^{2}=1-\frac{1}{9}=\frac{8}{9} $

Therefore $ x^{2}=\frac{4}{9}\Rightarrow x=\pm \frac{2}{3} $ .