Inverse Trigonometric Functions Question 141

Question: If $ {{\cos }^{-1}}( \frac{1}{x} )=\theta $ , then $ \tan \theta $ =

[MNR 1978; MP PET 1989]

Options:

A) $ \frac{1}{\sqrt{x^{2}-1}} $

B) $ \sqrt{x^{2}+1} $

C) $ \sqrt{1-x^{2}} $

D) $ \sqrt{x^{2}-1} $

Show Answer

Answer:

Correct Answer: D

Solution:

Given that $ {{\cos }^{-1}}( \frac{1}{x} )=\theta \Rightarrow \cos \theta =\frac{1}{x} $ Now, $ \tan \theta =\frac{\sin \theta }{\cos \theta }=\frac{\sqrt{1-{{(1/x)}^{2}}}}{1/x}=\sqrt{x^{2}-1} $