Inverse Trigonometric Functions Question 142

Question: $ \sin ({{\cot }^{-1}}x) $

[MNR 1987; MP PET 2001; DCE 2002]

Options:

A) $ \sqrt{1+x^{2}} $

B) $ x $

C) $ {{(1+x^{2})}^{-3/2}} $

D) $ {{(1+x^{2})}^{-1/2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ {{\cot }^{-1}}x=\theta \Rightarrow x=\cot \theta $ Now $ \cos ec\theta =\sqrt{1+{{\cot }^{2}}\theta }=\sqrt{1+x^{2}} $

$ \therefore \sin \theta =\frac{1}{\cos ec\theta }=\frac{1}{\sqrt{1+x^{2}}}\Rightarrow \theta ={{\sin }^{-1}}\frac{1}{\sqrt{1+x^{2}}} $

Hence $ \sin ({{\cot }^{-1}}x)=\sin ( {{\sin }^{-1}}\frac{1}{\sqrt{1+x^{2}}} ) $

$ =\frac{1}{\sqrt{1+x^{2}}}={{(1+x^{2})}^{-1/2}} $ .