Inverse Trigonometric Functions Question 149

Question: $ \sum\limits_{r=1}^{n}{{{\sin }^{-1}}}( \frac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r(r+1)}} ) $ is equal to

Options:

A) $ {{\tan }^{-1}}(\sqrt{n})-\frac{\pi }{4} $

B) $ {{\tan }^{-1}}(\sqrt{n+1})-\frac{\pi }{4} $

C) $ {{\tan }^{-1}}(\sqrt{n}) $

D) $ {{\tan }^{-1}}(\sqrt{n+1}) $

Show Answer

Answer:

Correct Answer: C

$ {{\sin }^{-1}}( \frac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r(r+1)}} )={{\tan }^{-1}}( \frac{\sqrt{r}-\sqrt{r-1}}{1+\sqrt{r}\sqrt{(r-1)}} ) $

$ ={{\tan }^{-1}}\sqrt{r}-{{\tan }^{-1}}(\sqrt{r-1}) $

$ \Rightarrow \sum\limits_{r=1}^{n}{{{\sin }^{-1}}( \frac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r}(r+1)} )} $

$ =\sum\limits_{r=1}^{n}{(ta{n^{-1}}\sqrt{r}-ta{n^{-1}}\sqrt{r-1})=ta{n^{-1}}\sqrt{n}} $